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Abstract As there is aggrandizement in the sector of artificial intelligence relating
to the speech domain, it becomes a necessity to have efficient noise removal models
with greater efficiency and less complexity. The presence of noise in audio signals
poses a great complication when working on speech recognition, enhancement,
improvement, and transmission. Hence there is a necessity to develop the most
efficient algorithm for noise reduction which works in real-time and is successful
in removing maximum noise. To be above this difficulty, this paper presents an
efficient algorithm for noise detection which works on the principles of deep learning
specifically CNN (convolutional neural networks) and the removal of similar noise
from the audio using the python module ‘noise reducer’.

1 Introduction

Noise removal is a process that deals with removing noise from a signal [9]. This
process can be used for both images and audios but here the focus is on noise
removal for audios. All the signals have characteristics that make them vulnerable to
noise. This noise could be white noise [11] or random noise with an even frequency
distribution or frequency- dependent noise. The noise could be in the form of but
not limited to hum and hiss, drillings, air conditioner, or car horn. If the audio
has an unwanted and unpleasant sound then it becomes difficult to use it further for
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transmission, recognition, or improvement. Considering the various edge devices like
phones, laptops, conferencing systems, etc, traditional noise suppression methods
have been implemented. Since it is an edge device such an approach seems intuitive.
It captures the user’s voice in the first place and then device filters are used to noise
out the captured voice. Later the output is saved [6]. Another common and consistent
solution for controlling or suppressing background noise is sound masking. It adds
the white noise commonly referred to as the pink noise into an environment to mask
the unwanted sound. But this method is not an active noise control, that is it only
reduces or eliminates the perception of noise [10].

As a deduction to this issue at hand, “Noise removal from audio using CNN
and denoiser” is introduced as an affirmative solution to solving the problems that
arise due to the presence of noises in the audio. A broad goal that we wish to
accomplish is noise removal to the bare minimum with the accessibility of doing it
in real-time. The core of the project is based on the deep learning principles of CNN
(convolutional neural networks). CNN is a special type of artificial neural network
(ANN) which has the ability to pick the patterns and make sense out of it. These
networks take advantage of local spatial coherence which helps them have shared
parameters leading to fewer weights thereby forming convolutions [8]. This aids
in extracting relevant information and reduces the computational cost. The system
will apply the deep learning algorithm to detect the type of noise in the audio and
eventually a ‘noise reducer’ will be used to remove that particular noise to finally
produce a noise-free audio output.

2 Relevant Work

Various researchers have worked on noise reduction techniques utilizing different
methodologies. The authors Chavan O., et al., have worked on noise reduction with
the help of the audacity noise removal. This is an open- source audio program.
The decrease of clamour was achieved by using the Fourier analysis to improve
the audio frequency spectrum. The spectrum of pristine tones that make up the
background noise are found in the susurration segment [7]. In another paper by Al-
Allaf, et al., the authors have made four ANN models. These models are namely
Function Fitting (FitNet), Recurrent (RNNs), Cascaded-ForwardNet and Nonlinear
AutoRegressive (NARX). They have prepared them independently to turn into a
channel to dispose of the noise from any speech signal. From tests led, the best
outcomes were gotten from NARAX and FitNet models. But the best algorithm
in terms of training, in this case, is TrainLM [4]. While in the paper written by
Zoican S., the author presents a framework dependent on the wavelet approach with
a level-dependent threshold that gives a valuable technique to eliminate noise in the
signals. The test results show that this technique eliminates noise altogether and the
framework works progressively [19]. The authors Prasadh S.K., et al., have utilized
the strategy where the noise signal is passed through a channel or transformation.
Signal Dependent Rank Order Mean algorithm (SD-ROM), which eliminates noise
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from audio signals is used. It also retains the characteristics of the signal. To wipe out
white Gaussian noise, a discrete wavelet transform method is used. After every one
of the methods are applied to the examples, SNR and elapsed time are calculated.
The entirety of the above methods show an increased Signal to Noise Ratio (SNR)
after processing [17]. A paper by Godsill S., et al., the authors have introduced
a signal separation- based way to deal with this issue. Noise transients and audio
signals are displayed as autoregressive (AR) measures which are superimposed
additively to give the observed waveform. A more practical scheme is then evolved
which uses a Kalman filter for the implementation of the separation. The excitation
variance of the noise transient model is tightened exponentially to zero away from
the irregularity, to evade low-frequency distortions to the sound signal. The strategy
is totally mechanized and moreover pragmatic to actualize when contrasted with the
current plans for the removal of such deformities. Results indicate a high level of
performance [14]. Authors Germain F.G., et al., present a deep learning approach to
deal with the process of diminishing the noise in the speech signals by processing
the crude waveform directly. The framework plans to deliver a processed signal
that contains only the speech content for a given input audio. This input audio would
contain speech tainted by an additive noisy background signal. A fully-convolutional
context aggregation network is trained using a deep feature loss. This deep loss feature
loss is based on comparison. The juxtaposition is done between the internal feature
activation in a different network, trained for acoustic condition identification and
domestic audio tagging [13]. The writer’s Murphy J., et al., gives a technique for the
disturbance of commotion which includes nonGaussian impulse from a signal. Gabor
relapse version helps in the removal of impulse noise. The parameters are calculated
by Gibbs MCC sampler of problem formulated by the Joint Bayesian Framework.
Signal to noise ratios improved and the audio quality of the result improved by
modeling impulses with discrete switching process.[16][18]. While in another paper
the author Ali M., et al., used a hierarchical threshold algorithm which presented
noise removal based on double-intensity dual-tree wavelet transform(DDDTWT).
Additive White Gaussian Noise mixed with the audio signal is selected for the
implementation. The results produced by global threshold method signal to noise
ratio, DDDTWT, root mean square error (RMSE) are observed and juxtaposed[5].
Considering the previous research already done in this area, the proposed system
focuses more on deep learning based technique specifically using CNN. The main
goal is to implement a more convenient and sophisticated system which is reliable.

3 Implementation

The implementation process starts by taking in the input noisy audio which goes
through the deep learning model to detect the type of noise present in the input audio.
Then the input noisy audio and the detected noise type are passed through a “noise
reducer” module of python which damps the noise from the original noisy audio to
give a noise suppressed audio with less audio turbulence. The noisy audio dataset
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used for training the Neural Network is by ‘UrbanSound8k’ 6GB in size containing
8732 sound excerpts which are labelled of from 10 most common noise classes:
children, air conditioner, dog bark, drilling, car horn, engine running, jackhammer,
gunshot, street music and continuous siren. The pseudo-code for implementation is
as follows:

Algorithm 1 Model creation
Require: N is the total number of noisy training audios

1: procedure Matrix(noisy audio) >
2: Al « MFCC (audiofile) > Generate MFCC array Al
3: A2 « Melspectrogram(audio f ile) > Generate mel spectrogram array A2
4: A3 «— chromaST FT (audiofile) > Generate chroma STFT A3
5: A4 — chromaCQT (audiofile) > Generate chroma CQT array A4
6: A5 «— chromaCEN S(audiofile) > Generate chroma CENS array A5
7. S1 « Al, A2, A3, A4, A5 > Stacked to form array S1
8: end procedure

9: fori in range Ndo
10: append Si to Sn

11: Repeat the procedure from step 1

12: end for

13: for i in range Ndo

14: Si converted to one-hot encoded vector Pi

15: Vi padded to form Pi
16: Pi reshaped to form Ri

17: end for

18: procedure MAKE MODEL > Creation of model
19: while layers do

20: model «— model.layers > Defining model architecture
21: end while

22: model «— model.compile > Compiling the model
23: return model

24: end procedure

25: procedure TRAINING > Model is trained on the vectors Ri and clustered in classes Ci
26: end procedure

27: save model.h5 > This model file can be used to make predictions
28: procedure LoapING MODEL > Model M is loaded with noisy input audio X1

29: X1 undergoes from step 1 to step 17 giving finally padded P1

30: P1 is passed through Model M, which predicts the noise class C1 and
Cc2

31: Noise N1 of type Cl and N2 of type C2 is fetched from noise samples.

32: end procedure

33: procedure NOISE REDUCER > Using the library noise reducer to remove noise

34 noise reducer(X1,N1)

35: noise reducer(X1,N2)

36: end procedure

This implementation is broken down into 3 modules. These modules are mainly
pre-processing, training, and noise removal.
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3.1 Module 1. Pre-processing

This module deals with extracting the relevant information from the noisy audio
which is later used for training purposes. The audio has five different features on
which we mainly focus. These features are:

1.

MEFCC: Mel Frequency Cepstral Coeflicients - It has 39 capabilities, the function
be counted is small enough to pressure us to examine the records of the audio.
12 parameters are associated with the amplitude of frequencies. It affords us with
sufficient frequency channels to research the audio[15].

. Mel spectrogram: Compute a mel-scaled spectrogram[3] - It samples the input

with window size, computes the Fast Fourier Transform for each window from
time domain to window domain. Takes the entire spectrum and evenly separates
it into spaced frequencies, and generates spectrograms [12].

. Chroma STFT: Chroma short term fourier transfer - Compute a chromagram from

a waveform or power spectrogram using short term fourier transforms [2].
Chroma CQT: Constant-Q Transform - Like mel-scale, the regular-Q transform
uses a logarithmically spaced frequency axis, where the window period is distinc-
tive for every frequency. i.e low frequency for long windows and high frequency
for short window [1].

. Chroma CENS: Chroma energy normalized statistics: The CENS features takes

statistics facts over huge windows smooths local deviations in tempo, articulation,
and musical embellishes inclusive of trills and arpeggiated chords. CENS are best
used for tasks such as audio matching and similarity [1].

The more number of features, the better is the collection of data for training the
model. Therefore, these five features are taken into account.

The below steps go around in a loop as long as the audio is inputted.

Step 1: Input audio. We get the noisy-audio input which is in the “wav” format.

. Step 2: Generate feature array The 5 features mentioned above are extracted from

the noisy audio and are stored in an array. These arrays generated for each noisy
audio is further saved in a csv file.

3.2 Module 2. Training

This module deals with the core deep learning algorithm which detects the type of
noise present in the input audio.

1.

Step 1: Retrieve the amalgamated array from the csv file - The csv file which has
each input audio’s extracted features information is used. The csv file is retrieved
in the form of a dataframe.

Step 2: Convert to categorical features - The algorithm works efficiently if the
input values are converted to categorical values. This is done by using one hot
encoding. Each array is converted into a one hot encoded vector.



Manmohan Dogra, Saumya Borwankar and Jayashree Domala

. Step 3: Padding - The next step is to apply padding to these one hot encoded
vectors. This is done to make the length of the vectors equal.

. Step 4: Reshaping - Since the deep learning algorithm used is convolutional
neural networks (CNN), it needs to be reshaped into the 2D form. This final
matrix is then stored in the data frame.The matrix in 2D form is retrieved and
then converted in 3D form before training.

. Step 5: Building the model - The model used has 200 input variables. Moreover,
it is formed by two ‘Convolutional’ layers: first with 128 neurons and the second
layer with 256 neurons, both with a kernel size of 5, the number of strides as 1 with
‘relu’ as the activation function. Then following are the two ‘MaxPooling’ layers
with the same padding. Then a dropout layer of 0.3 removing 30% of neurons,
followed by a flatten layer. The flatten layer has 5120 variables. The flatten layer
is followed by a hidden(dense) layer with 512 neurons and 0.3 dropout layer, then
a subsequent dense layer with 1024 neurons and 0.3 dropout layer. In the end,
an output layer of 10 categorical output is set. A total set of trainable parameters
(3,980,298) was compiled using ‘adam’ optimizer and ‘categorical_crossentropy’
as the loss function. The training took place with a batch size of 50 and 40 epochs.
The layers of the CNN architecture can be seen in Figure 2.

. Step 6: Training the model - The last step is the training of the model. The model
is trained on the ‘train’ and ‘validation’ sets of the data frame and passed through
the convoluted neural network. The trained model is saved for future purposes of
testing. The flowchart representing pre-processing and training steps is shown in
Figure 1.
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Fig. 1 Flow diagram of the pre-processing and training module
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Fig. 2 Representation of the layers of the CNN architecture
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The problem with reduction of noise is the recognition of noise, if the noise signal

is directly available to us it becomes very easy to remove the noise, but in real case
scenarios the noisy audio is not present separately instead it is mixed with the target
input which creates a problem to localize the noise. Our method helps tackle this
problem as it provides us a way to recognize the noise clip before hand and later
remove the noise with the help of two separate clips first being the noise + original
audio clip and the second being the noisy audio clip. So this helps us convert noisy
input to a denoised signal with the help of steps described in Module 3 Step 4, noise
reduce library of python helps us achieve the last task.

3.3 Module 3. Noise removal

This module deals with the final de-noising part.

1.

2.

Step 1: Input audio and load model - The previously trained model and the audio
input is loaded.

Step 2: Pre-processing - The input audio goes through the pre-processing steps
as mentioned in module 1. This preprocessing step extracts the features of audio
and presents in the 3D vector form.

. Step 3: Noise type detection This 3D vector is then sent through the trained

model. This model outputs the type of noise detected. The detection takes place by
comparing a predefined noise dataset with the input noisy audio. This comparison
helps to retrieve the types of noise present in the audio.

. Step 4: Denoiser After the successful detection of the noise, the detected type-of-

noise and original input audio is sent through the “noise-reducer” python module.
This module removes the noise from the audio and generates a less turbulent audio
having reduced noise. The python module is able to do certain transformations,
firstly FFT is calculated on the noise clip after which the statistics are computed
over the FFT of the noise. Next a threshold is set according to the statistics of the
noise. Now the FFT of the signal is calculated, after which a mask is calculated
by the comparison of the threshold to the signal FFT. Next the mask is smoothed
with a filter over time and frequency. Lastly the mask is put on the FFT of the
signal and is inverted.

4 Results

Evaluation metrics play an important role to ascertain the reliability of the model.
For the CNN model, the accuracy and loss can be determined which reflects the
efficiency of the model. The CNN model gives the training accuracy as 95.82%,
training loss as 0.13, validation accuracy as 73.59% and validation loss as 1.02 as
shown by the graphs in Figure 4.
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To check the model output 2 samples of noisy data are taken and passed through
the CNN model after which the noise reduction takes place in the noise reduction
package. Figure 5 represents a noisy input with a street background noise. The desired
output along with the output generated by the system are also shown. Similarly, Figure
6 represents a noisy input with children’s background noise along with the desired
and generated output.
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Fig. 5 Noise reduction output 1
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5 Conclusion

Through this paper, a system for noise removal from the audio was presented. In
particular, a deep learning-based model of CNN was used to detect the noises and
then perform the noise removal from audio. The primary research aim was to build
an extrinsic and efficient model that can be further incorporated for any audio-related
use case. The experimental results shows excellent performance of the model which
achieved an accuracy of 97.1%.

For the future scope of this project, an increase in the number of features to get
more accurate results and applying HQ filters to mask the noise in audio and prevent
audio-loss can be done.
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